
Neural Networks 190 (2025) 107658

A
0

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Full Length Article

Adaptive receptive field graph neural networks
Hepeng Gao a, Funing Yang a,∗, Yongjian Yang a, Yuanbo Xu a, Yijun Su b

a Jilin University, Changchun, 130012, Jilin, China
b JD Intelligent Cities Research, Beijing, 100007, China

A R T I C L E I N F O

Dataset link: https://github.com/wn13/ADRPG
NN

Keywords:
Graph Neural Network
Over-smooth issue
Node classification

 A B S T R A C T

Graph Neural Networks (GNNs) have drawn increasing attention in recent years and achieved outstanding
success in many scenarios and tasks. However, existing methods indicate that the performance of representation
learning drops dramatically as GNNs deepen, which is attributed to over-smoothing representation. To
handle the above issue, we propose an adaptive receptive field graph neural network (ADRP-GNN) that
aggregates information by adaptively expanding receptive fields with a monolayer graph convolution layer,
avoiding deepening to result in the over-smoothing issue. Specifically, we first present a Multi-hop Graph
Convolution Network (MuGC) that captures the information of the nodes and their multi-hop neighbors
with only one layer, preventing frequent passing messages between nodes from the over-smoothing issue.
Then, we design a Meta Learner that realizes the adaptive receptive field for each node to select related
neighbor information. Finally, a Backbone Network is employed to enhance the architecture’s learning ability.
In addition, our architecture adaptively generates receptive fields instead of handcrafting stacked layers,
which can integrate existing GNN frameworks to fit various scenarios. Extensive experiments indicate that
our architecture is effective for the over-smoothing issue and improves accuracy by 0.52% to 6.88% compared
to state-of-the-art methods on node classification tasks on eight datasets.
1. Introduction

Graphs are of the essence for an irregular domain, and they are
omnipresent in most areas (Duvenaud et al., 2015; Monti, Bronstein,
& Bresson, 2017; Zhang et al., 2018). Graph Neural Networks (GNNs),
a practical framework for learning graph representation, learn the node
and edge representations and graph structures to deal with graph-based
data (Jiang, Ji, & Li, 2019). The idea of GNNs is to aggregate the fea-
tures within receptive fields by stacking multiple layers, thus achieving
the fusion of the features and the structure. The receptive field is a
region in the input space that influences the computation of a particular
node’s representation within the graph, encompassing all the nodes and
edges that contribute to the node’s final representation after multiple
message-passing steps. Despite the success of graph modeling, a com-
mon issue, over-smoothing representation, is inevitable in GNNs, where
the node representations become more homologous and indistinguish-
able as the number of stacking graph convolutional layers increases
in GNN frameworks. Hence, these homologous representations fail to
support downstream tasks.

To introduce the over-smoothing representation situation, we give
a visualized toy example by deploying GCN (Kipf & Welling, 2017)
for the node classification task as shown in Fig. 1. When GCN goes

∗ Corresponding author.
E-mail addresses: gaohepeng13@hotmail.com (H. Gao), harptomato@163.com (F. Yang), yyj@jlu.edu.cn (Y. Yang), yuanbox@jlu.edu.cn (Y. Xu),

suyijun.ucas@gmail.com (Y. Su).

deep (layer=6), the learned node representations of multiple categories
are too similar to classify, which is a typical over-smoothing issue.
However, in scenarios and tasks where GNNs are used, it is necessary to
stack enough graph convolution layers to enlarge the receptive fields
for structural information. In summary, a deeper GNN obtains more
structured information, but it has to solve or relieve the over-smoothing
issue to guarantee the task’s performance, making it a dilemma in
existing GNNs.

To our knowledge, several works have been devoted to tackling the
over-smoothing issue. Among them, most existing works (Chen, Wei,
Huang, Ding, & Li, 2020; Giraldo, Skianis, Bouwmans, & Malliaros,
2023; Hu et al., 2020; Liu, Gao, & Ji, 2020; Liu, Zhou, et al., 2023;
Ma, Wang, Chen, & Song, 2021) focus on how to go deep, where
GNN architectures enlarge receptive fields for sufficient neighbor in-
formation and relieve the over-smoothing issue by various methods.
In addition, the idea of N-GCN (Abu-El-Haija, Kapoor, Perozzi, & Lee,
2020) is how to go wide, where graph convolutional layers aggregate
information from various subgraph structures to improve performance
and relieve the over-smoothing issue, but it does not investigate the
over-smoothing issue. However, these works still fall short due to the
following challenges:
https://doi.org/10.1016/j.neunet.2025.107658
Received 21 September 2024; Received in revised form 6 May 2025; Accepted 19 M
vailable online 5 June 2025
893-6080/© 2025 Published by Elsevier Ltd.
ay 2025

https://www.elsevier.com/locate/neunet
https://www.elsevier.com/locate/neunet
https://github.com/wn13/ADRPGNN
https://github.com/wn13/ADRPGNN
https://github.com/wn13/ADRPGNN
https://github.com/wn13/ADRPGNN
https://github.com/wn13/ADRPGNN
https://github.com/wn13/ADRPGNN
https://github.com/wn13/ADRPGNN
https://github.com/wn13/ADRPGNN
https://github.com/wn13/ADRPGNN
https://github.com/wn13/ADRPGNN
https://github.com/wn13/ADRPGNN
https://github.com/wn13/ADRPGNN
https://github.com/wn13/ADRPGNN
https://github.com/wn13/ADRPGNN
https://github.com/wn13/ADRPGNN
https://github.com/wn13/ADRPGNN
https://github.com/wn13/ADRPGNN
https://github.com/wn13/ADRPGNN
https://github.com/wn13/ADRPGNN
https://github.com/wn13/ADRPGNN
https://github.com/wn13/ADRPGNN
https://github.com/wn13/ADRPGNN
https://github.com/wn13/ADRPGNN
https://github.com/wn13/ADRPGNN
https://github.com/wn13/ADRPGNN
https://github.com/wn13/ADRPGNN
https://github.com/wn13/ADRPGNN
https://github.com/wn13/ADRPGNN
https://github.com/wn13/ADRPGNN
https://github.com/wn13/ADRPGNN
https://github.com/wn13/ADRPGNN
mailto:gaohepeng13@hotmail.com
mailto:harptomato@163.com
mailto:yyj@jlu.edu.cn
mailto:yuanbox@jlu.edu.cn
mailto:suyijun.ucas@gmail.com
https://doi.org/10.1016/j.neunet.2025.107658
https://doi.org/10.1016/j.neunet.2025.107658
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2025.107658&domain=pdf

H. Gao et al. Neural Networks 190 (2025) 107658
Fig. 1. (a) shows an unweighted undirected subgraph. The colors of nodes indicate labels, while the edges represent adjacency relations. (b) shows node embedding visualizations
with two and six graph convolutional layers.
• Model Depth. It is a primary concern for representation learn-
ing how to balance the model’s depth and the over-smoothing
issue. By stacking layers, the receptive field of a node with a
high degree could lead to over-smoothing (Chen, Wei et al.,
2020). In other words, nodes frequently pass messages, making
the representations indistinguishable.

• Adaptivity. In traditional methods, nodes have the same recep-
tive field, i.e., the same number of stacking graph convolution
layers, so target nodes could not precisely obtain related nodes
to learn structure information or introduce noise. In most cases,
each node in a graph has its own suitable receptive field instead
of all nodes having a fixed receptive field.

To bridge the gap, we propose a novel graph convolutional architec-
ture, the adaptive receptive field graph neural network (ADRP-GNN), to
generate receptive fields of nodes and aggregate the features of nodes
and their multi-hop neighbors with a monolayer. More specifically,
our architecture consists of three components: (1) Multi-hop Graph
Convolution Network (MuGC) takes into account the features within
K -hop neighbors. It decouples going deep and enlarging receptive
fields and obtains sufficient receptive fields as a monolayer graph
convolutional layer, which avoids GNNs going deep and relieves the
over-smoothing issue. (2) Meta Learner predicts the suitable receptive
fields K to achieve adaptive receptive fields for each node and avoid
noise. (3) Backbone Network, stacking fully connected networks, en-
hances learning ability to support the shallow MuGC. The contributions
of this paper are summarized as follows:

• We propose a novel graph convolutional architecture with a new
perspective that decouples receptive fields from stacking layers
and directly obtains distant node information. MuGC goes wide
instead of deep to enlarge the receptive fields and relieve the
over-smoothing issue.

• We propose a Meta Learner to predict the receptive fields of
nodes, addressing the problem of noise and insufficient infor-
mation during GNN messaging. Each node adaptively generates
a suitable receptive field instead of all nodes having a fixed
receptive field.

• We conduct extensive experiments to evaluate our model on eight
real-world graph datasets. Our architecture improves accuracy by
0.52% to 6.88% compared to state-of-the-art methods on node
classification tasks.
2
2. Related work

2.1. Graph tasks

GNNs have been widely applied to various tasks and scenarios
across multiple domains. Unlike the tasks of CNNs, which increase
the feature channels and reduce the size of the feature map, GNNs
are designed to learn effective representations for nodes, edges, or
entire graphs to facilitate downstream tasks. Graph learning tasks can
be broadly categorized into three types: (1) Node-level tasks aim to
learn node representations for downstream applications, e.g., node
classification (Liu, Zhan, et al., 2023; Luan et al., 2023; Tan, Guo,
Ding, & Liu, 2023; Zhao, Jin, et al., 2024), node clustering (Liu, Liang,
et al., 2023; Liu, Yang, et al., 2023; Pan & Kang, 2023; Tsitsulin,
Palowitch, Perozzi, & Müller, 2023), etc. These tasks are prevalent
in social network analysis, recommendation systems, and molecular
property prediction. (2) Edge-level tasks focus on modeling pairwise
relationships, e.g., link prediction (Gregucci, Nayyeri, Hernández, &
Staab, 2023; Li et al., 2023; Liu, Li, Fiumara, & De Meo, 2023; Tan,
Zhang, et al., 2023; Zhang et al., 2023). These are particularly relevant
in applications, including knowledge graph completion, protein-protein
interaction networks, fraud detection, etc. (3) Graph-level tasks seek to
generate holistic representations of entire graphs, e.g., graph classifi-
cation (Guo & Mao, 2023; Ju et al., 2024; Luo, Shi, & Wu, 2025; Ma,
Hu, Ge & Zhang, 2023; Yin et al., 2023). These tasks are widely used
in drug discovery, material science, etc.

In addition, to capture structural dependencies, two main GNN
paradigms have emerged: (1) Spectral methods (Defferrard, Bresson, &
Vandergheynst, 2016; Kipf & Welling, 2017; Li, Wang, Zhu, & Huang,
2018; Lu et al., 2024; Wang & Zhang, 2022; Yang et al., 2022) define
graph convolutions based on spectral graph theory, effectively mod-
eling global patterns but often lacking generalizability across graphs.
(2) Spatial methods (Donnat & Jeong, 2023; Ma, Lin, et al., 2023;
Velickovic et al., 2018; Xu, Hu, Leskovec, & Jegelka, 2019; Zhang,
Cheng, Yuan, & Zhang, 2024; Zhao, Zheng, et al., 2024) define convo-
lutions over local neighborhoods, offering better scalability and adapt-
ability to large or dynamic graphs, but rely on carefully designed
message-passing schemes.

2.2. Over-smoothing issue in GNNs

The issue that representations of neighboring nodes are too close
to classify as GNNs go deep is called over-smoothing and has been
demonstrated by the literature (Bo, Wang, Shi, & Shen, 2021; Li, Han,

H. Gao et al. Neural Networks 190 (2025) 107658
& Wu, 2018; Yang, Wang, Gu, Cao, & Niu, 2021). MADGap (Chen,
Lin, et al., 2020) for measuring the over-smoothness of the graph node
representations is further proposed. Many methods have emerged to
solve the over-smoothing issue. GRAND (Feng et al., 2020) designs
a self-supervised task that randomly masks node features to gener-
ate multiple graphs and utilizes consistency regularization to improve
the model’s performance. GCLN (Hu et al., 2020) characterizes and
enhances indistinguishable features by fusing the corresponding con-
textual information from the contracting side to the deeper layers.
N-GCN enlarges the feature channels of each layer by random walk
generating subgraphs. CGNN (Xhonneux, Qu, & Tang, 2020) builds
the connection between recent GNNs and traditional dynamic systems,
which is robust to over-smoothing. CurvDrop (Liu, Zhou, et al., 2023)
integrates the Discrete Ricci Curvature into graph neural networks to
enable more expressive graph models. ACMP (Wang, Yi, Liu, Wang,
& Jin, 2023) which has a simple implementation with a neural ODE
solver can propel the network depth up to one hundred of layers with
a theoretically proven strictly positive lower bound of the Dirichlet
energy. Our architecture proposes a single graph convolutional layer
to relieve deep GNNs leading to over-smoothing.

2.3. Adaptive receptive fields

To solve the over-smoothing issue and obtain better performance,
adaptive approaches are widely applied to GNN. ADSF (Zhang, Zhu,
Wang, & Zhang, 2020) proposes an adaptive structural fingerprint
model to encode complex topological and structural information of
the graph to improve graph representation learning. STAR-GNN (Ma
et al., 2021) proposes a method based on anonymous random walks to
model the local structural embedding of nodes, and construct receptive
fields discretely and adaptively based on the mutual information of the
neighboring nodes and target nodes. MpnnDRF (Wang, Di, & Chen,
2023) to improve the ability of the message passing neural network
by capturing the receptive field in different graphs. Our architecture
proposes that Meta Learner select suitable receptive fields for nodes to
adapt to different scenarios and tasks.

3. Preliminaries

In this section, we give the mathematical definitions and problem
statements discussed in this paper for convenience.

A graph is defined as  = ( ,  ,), where  = {𝑣1, 𝑣2,… , 𝑣𝑁} is a set
of 𝑁 nodes and  = {𝑒𝑖𝑗 |1 ≤ 𝑖, 𝑗 ≤ 𝑁} is a set of edges. The attribute set
 = {𝑥1, 𝑥2,… , 𝑥𝑁} has a one-to-one correspondence with the node set
 , where 𝑥𝑖 represents the feature vector of node 𝑣𝑖. The downstream
task labels are defined as  = {𝑦1, 𝑦2,… , 𝑦𝑁}.

Problem Definition. Given , the goal is to learn distinguishable
representation vectors  = {𝑧1, 𝑧2,… , 𝑧𝑁} of nodes  and using  to
handle downstream node classification tasks, i.e., 𝑓 ∶  → ̂ where
̂ = {𝑦̂1, 𝑦̂2,… , 𝑦̂𝑁} is predicted downstream task labels. Our frame-
work focuses on relieving over-smoothing representations of nodes to
learn distinguishable and effective representations when nodes expand
receptive fields.

4. Methodology

In this section, we describe the proposed overall architecture as
shown in Fig. 2. Our proposed ADRP-GNN takes the graph structure and
node features as input and outputs the node representations for address-
ing downstream tasks. It consists of three main steps: (a) Multi-hop
Graph Convolution Network. The main function of this component is
to aggregate the information within K -hop neighbors with a monolayer
graph convolution. (b) Meta Learner. This component predicts the
receptive field K and provides it to MuGC. (c) Backbone Network. This
component increases the depth of the architecture to enhance learning
ability.
3
In addition, we propose a meta-loss function and a task-loss func-
tion to optimize ADRP-GNN. More details of our architecture and
optimizations are illustrated in the following. Further, we analyze
the time consumption of our architecture and reduce computational
consumption.

4.1. Backbone network

Compared with the traditional method, using stacking layers to
enlarge the range of aggregated neighbors increases the number of
nonlinear layers of the models, which also enhances the ability of
feature extraction and fusion. However, MuGC using only one layer
aggregates the features of multi-hop neighbors, whose ability is limited
to extract features and fuse information.

To this end, we present the Backbone Network, consisting of stack-
ing fully connected layers, to overcome the drawback. In addition,
Backbone Network compresses the node representation dimension to
decrease the number of architecture parameters and accelerate the
computational speed. It is expressed as:
ℎ(𝑡+1)𝑖 = 𝜎(𝑓 𝑡

backbone(ℎ
𝑡
𝑖)), (1)

where, 𝑓 𝑡
backbone is layer t (𝑡 ∈ {0, 1, 2,…}) of Backbone Network, and

ℎ𝑡𝑖 and ℎ
(𝑡+1)
𝑖 are the input and output of layer t, respectively. ℎ0𝑖 is the

feature 𝑥𝑖 of node 𝑣𝑖 and the output 𝐇 of Backbone Network inputs the
MuGC.

4.2. Multi-hop Graph Convolution Network

We propose MuGC, a graph convolution layer that aggregates fea-
tures of neighbors to update the representation of target nodes based
on graph structure. Compared with traditional GNNs, our proposed
MuGC directly aggregates distant neighbors without messages passing
repeatedly.

In traditional GNNs, target nodes aggregate distant neighbors’ infor-
mation by immediate neighbors passing. Therefore, the node represen-
tations contain the information that they require and pass, which leads
to the representations being indistinguishable. As shown in Fig. 3(a),
the target node 𝑣0 repeatedly aggregates representations of directly
connected nodes 𝑣1, 𝑣2, and 𝑣6 to obtain graph structure information.
The representations of nodes 𝑣1, 𝑣2, and 𝑣6 could consist of information
they and node 𝑣0 need, i.e., 𝑣0, which results in nodes 𝑣0, 𝑣1, 𝑣2, and
𝑣6 being similar. Meanwhile, node 𝑣0 passes messages to other nodes,
when the other nodes as target nodes, e.g., 𝑣1, 𝑣2, and 𝑣6. With receptive
fields enlarging, the representations contain more information that the
node does not need but is required by neighbors within receptive fields
and become over-smoothing.

In summary, existing methods are serial aggregation, where nodes
contain information that their neighbors within the same receptive field
need, which results in over-smoothing representations. Existing meth-
ods to mitigate the over-smoothing problem while capturing multi-hop
information include the following approaches: (1) Edge manipulation
(DropEdge (Rong, Huang, Xu, & Huang, 2019), GeniePath (Liu et al.,
2019) and SJLR (Giraldo et al., 2023)), where edges are randomly
added or removed to prevent excessive message passing between nodes.
(2) Residual connections (GCNII (Chen, Wei et al., 2020)) and ag-
gregation of intermediate layer outputs (DAGNN (Liu et al., 2020)),
which combine both shallow and deep features to generate node rep-
resentations, thereby enhancing multi-hop information. (3) Topologi-
cal enhancement (SMEGCN (Jiang, Yang, Wen, Su, & Huang, 2022)),
where the topology used during the aggregation process is enhanced to
capture richer multi-hop information and address the over-smoothing
issue.

To address the above issue, we design the MuGC, a message-passing
method that directly obtains information from distant neighbors instead
of passing it repeatedly. The MuGC aggregates the neighbors’ informa-
tion of each hop separately and combines the aggregated information

H. Gao et al. Neural Networks 190 (2025) 107658
Fig. 2. An overall architecture of ADRP-GNN. The input graph is initially processed by a backbone network to extract node features 𝐇. Subsequently, the Node Layer separately
extracts information of multi-hop neighbors, providing 𝑘 as input to the Meta Learner for determining the receptive fields 𝐾. The Receptive Field Layer then aggregates 𝑘 based
on 𝐾 to construct the node representations  and infer the downstream task labels ̂ . The optimization module comprises Meta Loss and Task Loss, responsible for optimizing
the Meta Learner and the others, respectively.
Fig. 3. (a) The message passing of traditional GNNs where node 𝑣0 is the target node and nodes 𝑣1, 𝑣2, and 𝑣6 are the 1-hop neighbor nodes. The 𝑣0 denotes information that 𝑣0
needs in the distance in the message passing. (b) Explanation of MuGC aggregating process. The blue circles are neighbors while the orange nodes are target nodes 𝑖.
of all hops to update target nodes. Specifically, the MuGC consists of a
Node Layer and a Receptive Field Layer, where the former separately
extracts information of each hop, while the latter combines information
of hops within receptive fields, as shown in Fig. 3(b).

4.2.1. Node layer
Inspired by the traditional GNNs enlarging the receptive field, the

Node Layer extracts information of neighbors within K -hop, as shown
in Fig. 3(b). The mathematical expression of Node Layer is defined as

𝑧𝑘𝑖 =
{

𝑊𝑛ℎ𝑖, 𝑘 = 0
𝐹𝐺(𝑊𝑛ℎ𝑖, {𝑊𝑛ℎ𝑗 , 𝑣𝑗 ∈  𝑘

𝑖 }), 𝑘 > 0
(2)

where 𝑖 and 𝑘 indicate the node index and the hop index, respectively.
𝑊𝑛 is a weight matrix to transform and compress the initial features,
and  𝑘

𝑖 denotes the set of nodes whose minimum distance is 𝑘 away
from the target node 𝑣𝑖.

𝐹𝐺 is a network aggregating single-hop neighbors’ information,
which could be designed based on tasks or adopt existing message-
passing methods, e.g., GAT (Velickovic et al., 2018), GCN (Kipf &
Welling, 2017), etc. Target nodes are regarded as their 0-hop neigh-
bors, i.e., 𝑣𝑖 ∈  0

𝑖 . We utilize the attention-based method as the
message-passing method.

Through the above process, we obtain a set of representations 𝑘
𝑖 =

{𝑧0𝑖 , 𝑧
1
𝑖 ,… , 𝑧𝑘𝑖𝑖 } within the receptive field 𝑘𝑖 of the target node 𝑣𝑖.

4.2.2. Receptive field layer
The Node Layer generates the 0, 1,… , 𝑘-hop representations whose

information does not overlap. Furthermore, the vital issue, in accom-
plishing the aggregation, is exploring how much each hop represen-
tation affects each other and contributes to the final representations.
4
The Receptive Field Layer, as shown in Fig. 3(b), combines the infor-
mation within the receptive field. The target node 𝑣𝑖 representation is
calculated as:
𝑧𝑖 = 𝐹𝑢({𝑧0𝑖 , 𝑧

1
𝑖 ,… , 𝑧𝑘𝑖𝑖 }), (3)

where 𝐹𝑢 is an attention-based function aggregating information of
hops, which can handle variable-length sequences adaptively and in ac-
cord with the message-passing mechanism. The attention-base function
learns the importance of each hop’s information for the target nodes.
The final prediction 𝑦̂𝑖 for the downstream task is made using 𝑧𝑖, or
alternatively, a linear layer is added to map it.

4.3. Meta learner

Considering existing works utilize stacking graph convolutional lay-
ers to enlarge receptive fields. However, they cannot select the suitable
receptive field for each node, rather the receptive fields are fixed for the
reason that the model architectures are static. Obviously, nodes have
different influences and contributions to other nodes on representation
learning. With too small a receptive field, the target node cannot obtain
adequate structural information and, conversely, aggregating irrelevant
nodes results in the introduction of noise. In addition, previous works
manually design the depth of the model for various scenarios and tasks
based on experiences.

Meta Learner presents a new perspective on generating adaptive
receptive fields K that are optimal for each node. Meta Learner extracts
meta knowledge from node features and graph structures and predicts
receptive fields K to MuGC, which indicates 𝑓meta and consists of two
parts: 𝑓 and 𝑓 .
rnn score

H. Gao et al. Neural Networks 190 (2025) 107658
Inspired by the order of traditional GNNs in message passing, we
utilize the LSTM to learn how neighbors within k-hop affect target
nodes. From the perspective of the graph structure, distant neighbors
affect and connect to target nodes via immediate neighbors. Hence, we
apply the gate mechanism to join and remove the distant information
based on the immediate information. The 𝑓rnn obtains information of
larger receptive fields, which is calculated as:

𝑡𝑘𝑖 = 𝑓rnn(𝑧𝑘𝑖). (4)

Finally, we score the receptive fields and select the optimal, which
is formulated as follows:

𝑘𝑖 = argmax
𝑘∗𝑖

(𝑓score(𝑡𝑘
∗

𝑖)), (5)

where 𝑓score is a fully connected network to predict the score of the
receptive field 𝑘∗(𝑘∗ = 0, 1, 2,…). After that, we select the optimal
receptive field for the target node 𝑣𝑖 at the maximum score as 𝑘𝑖, which
means that features of neighbors within 𝑘𝑖-hops are aggregated when
the target node 𝑣𝑖 generates the representation.

4.4. Optimization

Our architecture provides an end-to-end architecture to learn deep
representations and address downstream tasks. Specifically, we design
two loss functions to optimize the parameters of the architecture,
i.e., the task-loss function and the meta-loss function, where the for-
mer aims to learn representations and predict labels, while the main
objective of the latter is to select the optimal receptive fields.

4.4.1. Task-loss function
Supposing the task-loss function for architecture training is Task,

which measures the performance of a model on a downstream task. The
task-loss function optimizes the MuGC and the Backbone network by
minimizing the difference between the ground truth and predicted val-
ues. The task-loss function takes architecture outputs and downstream
task labels as input, calculated by:

Task =
1
𝑛𝑡

𝑛𝑡
∑

𝑖=0
𝑙𝑡(𝑦𝑖, 𝑦̂𝑖|𝑘𝑖), (6)

where 𝑛𝑡 is the number of instances, 𝑦𝑖 is the ground truth, 𝑦̂𝑖 is the pre-
diction value, and 𝑘𝑖 is the receptive fields that Meta Learner predicts.
𝑙𝑡 varies according to the downstream task. We take cross-entropy as 𝑙𝑡
for the node classification.

4.4.2. Meta-loss function
The strategy, which selects receptive fields, is a discrete search space

and cannot be optimized directly with the task-loss function. For the
meta-loss function Meta, we introduce a probabilistic score to evaluate
the task prediction accuracy under the receptive field 𝑘𝑖. To select
the optimal receptive field, we design 𝑙𝑚 as cross-entropy to fit curves
with hop representations and receptive fields as independent variables
and downstream task accuracy as dependent variables. We optimize
the parameters of the Meta Learner by minimizing Meta, which is
expressed as:

Meta =
1
𝑛𝑚

𝑛𝑚
∑

𝑖=0
𝑙𝑚(1(𝑦𝑖, 𝑦̂𝑖|𝑘𝑖), 𝑓meta(𝑧𝑖|𝑘𝑖)), (7)

where 𝑛𝑚 is the number of instances. 1 ∈ {0, 1} is an indicator function
that evaluates to 1 if and only if node 𝑣 is the correct classification.
𝑖

5
4.4.3. Training

Algorithm 1 Training algorithm of ADRP-GNN.
Require: Graph  = ( ,  ,); Task Label  .
1: initialize all trainable parameters
2: while stopping criteria is not met do
3: Meta Learner calculates the receptive field 𝐾
4: forward-backward on Task by ,  , and 𝐾
5: update 𝜔𝑚𝑢 and 𝜔𝑏𝑘
6: randomly select the receptive field 𝐾
7: calculate Task
8: forward-backward on Meta by Task, 𝐾
9: update 𝜔𝑚𝑡
10: end while
11: return output parameters of learned ADRP-GNN

The parameters of architecture are trained by Task and Meta
through the back-propagation strategy. The complete training process
is divided into two processes, i.e., Task and Meta optimization. The Al-
gorithm 1 outlines the training process of our architecture. Specifically,
there are two types of trainable parameters. Let 𝜔𝑚𝑢 and 𝜔𝑏𝑘 indicate
the trainable parameters of the MuGC and the Backbone Network,
respectively. Let 𝜔𝑚𝑡 indicate the trainable parameters in the Meta
Learner.

In Task optimization, with Meta Learner fixed and given the re-
ceptive field, we update 𝜔𝑚𝑢 and 𝜔𝑏𝑘 by gradient descent (lines 3–5 of
Algorithm 1).

Similarly, in the Meta optimization (lines 6–9 of Algorithm 1), we
first randomly select the receptive field of instances to explore the task
loss of different receptive fields. For MuGC and Backbone Network
fixed and given the receptive field, we then calculate Task. Finally,
we update 𝜔𝑚𝑡 to accurately predict Task and the maximum score is
the best receptive field.

4.5. Time complexity analysis

In this subsection, we provide a theoretical analysis of the time
complexity of our architecture. Existing graph neural networks can
be broadly categorized into three types based on their aggregation
methods: neighbor-based GNNs (e.g., GCN and GAT), path-based GNNs
(e.g., GraphSAGE), and subgraph-based GNNs (e.g., ADRP-GNN). The
time complexity of different methods in the same category may vary
due to aggregate manners.

Above all, we define a graph with m nodes, where each node
has n neighbors, and the model’s receptive field is k. Following the
general paradigm of GNNs, the node representations are first mapped,
then aggregated, and finally, the target node representation is updated.
The time complexity of aggregating a node to a target node is 𝑂(1),
assuming no complex design. We analyze the time complexity for
inferring a node (target node) in each of the three categories.

Neighbor-based GNNs: This method performs message passing be-
tween pairs of nodes connected by edges, and this is repeated k times.
Therefore, the time complexity is 𝑂(𝑘𝑚𝑛), where m is the number of
nodes, n is the number of neighbors per node, and k is the number of
hops.

Path-based GNNs: In these approaches, neighbors are sampled in
terms of paths, with the constant sampling rate. The message passing
is performed over the sampled edges, and this operation is repeated k
times. As the sampling rate is a constant and does not affect the time
complexity, the time complexity is still 𝑂(𝑘𝑚𝑛).

Subgraph-based GNNs: In this type, the target node aggregates all
neighbors up to k-hops. The time complexities of MuGC and Meta
Learner are 𝑂(1), which are similar to traditional GNNs. The number
of neighbors grows exponentially as ∑𝑘

𝑖 𝑛
𝑖, and thus the time com-

plexity of subgraph-based methods such as ADRP-GNN is 𝑂(𝑛𝑘). (In

H. Gao et al. Neural Networks 190 (2025) 107658
Table 1
Details of the datasets.
 Dataset Nodes Edges Degree Features Classes
 Cora 2708 5429 2.00 1433 7
 CiteSeer 3327 4732 1.42 3703 6
 PubMed 19,717 44,338 2.25 500 3
 Facebook 22,470 342,004 7.61 128 4
 Actor 7600 30,019 7.90 932 5
 Cornell 183 298 3.26 1703 5
 Texas 183 325 3.55 1703 5
 Wisconsin 251 515 4.10 1703 5

case of stacked convolutional layers, the time complexity is 𝑂(𝑘𝑚𝑛).)
Therefore, the primary factor affecting the time complexity in ADRP-
GNN is the aggregation of the large number of neighbors. The time
consumption increases significantly for high-degree nodes on large
graphs, e.g., social networks.

In the case of Meta Learner, its presence does not necessarily in-
crease the computational cost. For instance, when the receptive field is
set to 10, traditional GNNs would require 10 rounds of message passing.
In contrast, Meta Learner might terminate the message passing early,
effectively reducing the computational cost.

Intuitively, an aggressive solution is to downsample neighbors of
each hop to decrease the time complexity of ADRP-GNN. So, we pro-
pose a strategy that significantly reduces computational complexity
and accelerates computation. Specifically, we sample 𝑛𝑖 = 𝑝𝑖𝑛𝑚 nodes
from 𝑘𝑖-hop neighbors, where 𝑝𝑖 is the constant sampling rate. The
number of nodes that target nodes aggregate is ∑𝑘

𝑖 𝑛𝑖. Theoretically, our
architecture and traditional GNNs aggregate an exponential and linear
number of neighbors, respectively. Sampling neighbors of receptive
fields reduces the time complexity to linear, which is the same as that
of traditional GNNs. Therefore, the time complexity of our framework
decreases to 𝑂(𝑘𝑛𝑚).

It is important to note that this does not imply that the compu-
tation time of MuGC after sampling is necessarily lower than that
of traditional methods in practical applications. This is mainly due
to two reasons: (1) the sampling ratio affects the actual number of
aggregated neighbors, and (2) when inferring all nodes simultaneously,
intermediate results in traditional methods can be reused, significantly
reducing the overall computation time.

In addition, the architecture in terms of time complexity is advan-
tageous compared to traditional GNNs with the same receptive field, as
it has only one layer and does not frequently transform and aggregate
messages. Summarily, the time computation is acceptable in scenarios,
and the time consumption is analyzed in the following experiments.

5. Experiments

In this section, we set up multiple experiments to evaluate the
effectiveness of ADRP-GNN on real-world tasks. We perform node
classification to illustrate the ability of ADRP-GNN. We also conduct an
over-smoothing analysis to further prove the ADRP-GNN solution and
examine time consumption. In addition, we demonstrate the effects of
each component through an ablation study.

5.1. Datasets

We conduct experiments on eight real-world datasets and the details
of the datasets are shown in Table 1.

• Citation Network. In Cora,1 CiteSeer , and PubMed, nodes, edges,
and features of the citation network correspond to papers, paper
citation relations, and the content of papers, respectively. For
node classification, node labels are research fields.

1 https://linqs.soe.ucsc.edu/datasets
6
• Social Network. In Facebook,2 it consists of a social network of
Facebook pages where nodes represent pages and edges represent
mutual likes between them. For the node classification task, labels
have four categories: politicians, organizations, television shows,
and companies. Actor3 is a co-occurrence network where nodes
represent actors and edges represent co-appearances in movies.
Each node has a feature vector based on the genres of the movies
in which the actor has appeared. This could be a binary vector
where each dimension represents a specific genre.

• Webpage Network. Cornell,4 Texas, and Wisconsin are subsets
of the WebKB dataset, whose nodes represent web pages, and
edges are hyperlinks between them. Node features are the bag-of-
words representation of web pages. The web pages are manually
classified into the five categories, student, project, course, staff,
and faculty.

5.2. Baselines

We compare our architecture with several strong baselines.
For traditional GNN methods, GraphSAGE adopts a fixed-size neigh-

bor sampling strategy to construct regular data and expand receptive
fields. GCN, which lies in the spectral domain, heavily relies on the
graph Laplacian matrix to guide aggregate neighbors to target nodes.
GAT, which lies in the spatial domain, utilizes an attention mechanism
to combine neighboring features to target nodes. GIN (Xu et al., 2019)
is a robust GNN framework to capture different graph structures with
the same ability as the Weisfeiler-Lehman graph isomorphism test. JK-
Net (Xu et al., 2018) leverages skip connections to go deeper for larger
receptive fields. We report the best results from the multiple architec-
tures of JK-Net. NLGCN (Liu, Wang, & Ji, 2021) proposes an effective
non-local aggregation framework with an efficient attention-guided
sorting for GNNs.

For recent GNN methods solving over-smoothing, GeniePath (Liu
et al., 2019) obtains adaptive receptive fields by both breadth and
depth exploration. DropEdge (Rong et al., 2019) randomly removes
a certain number of edges from the input graph at each training
epoch, acting like a data augmenter and also a message-passing re-
ducer. GCNII (Chen, Wei et al., 2020) utilizes Initial residuals and
Identity mapping. DAGNN (Liu et al., 2020) adaptively incorporates
information from large receptive fields. SMEGCN (Jiang et al., 2022)
introduces the local topology into the graph Laplacian by introducing
the notion of the motif. SJLR (Giraldo et al., 2023) introduces the
Stochastic Jost and Liu Curvature Rewiring algorithm, which performs
edge addition and removal during GNN training while maintaining the
graph unchanged during testing. GraphSAGE++ (Jiawei et al., 2024)
extracts the representation of the target node at each layer and then
concatenates all layer weighted representations to obtain the final
result. NASC (Sancak, Balin, & Catalyurek, 2024) proposes a novel skip
connection with an adaptive weighting strategy.

5.3. Experimental settings

We implement our proposed framework using PyTorch 2.0.1 and
PyTorch Geometric 2.3.0 and train the model on a server with NVIDIA
RTX4090 GPU. We use the following sets of hyperparameters for the
above benchmark datasets: 64 (number of hidden units) for MuGC, 64
(number of hidden units) for Backbone Network, and 64 (number of
hidden units) for Meta Learner. The batch size is set to 1024, and the
model is trained for 200 epochs. We use the Adam optimizer with a
learning rate of 0.005 and a weight decay of 0.0001. The receptive
field is set to 10. For the compared baselines, we closely follow their

2 http://snap.stanford.edu/data
3 http://en.wikipedia.org/wiki/Category:English-language_films
4 http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb

https://linqs.soe.ucsc.edu/datasets
http://snap.stanford.edu/data
http://en.wikipedia.org/wiki/Category:English-language_films
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb

H. Gao et al. Neural Networks 190 (2025) 107658
Table 2
Performance results on Cora, CiteSeer, PubMed, and Facebook in terms of node classification accuracy (in percent). The best results are boldfaced.
The underlined numbers are the second best results.
 Dataset Cora CiteSeer PubMed Facebook
 GraphSAGE 88.17 ± 1.95 77.11 ± 1.78 84.81 ± 0.62 89.92 ± 0.58
 GCN 87.12 ± 1.62 76.73 ± 1.45 87.58 ± 0.66 91.61 ± 0.36
 GAT 87.48 ± 1.25 76.58 ± 1.51 86.05 ± 0.54 90.38 ± 0.49
 GIN 81.73 ± 1.82 68.46 ± 1.90 85.57 ± 0.59 90.03 ± 0.57
 JK-Net 86.61 ± 0.93 75.57 ± 1.23 86.80 ± 0.42 91.84 ± 0.28
 NLGCN 87.80 ± 1.83 77.63 ± 1.33 87.55 ± 0.67 90.96 ± 0.34
 GeniePath 85.98 ± 2.01 74.62 ± 0.94 88.31 ± 0.44 89.03 ± 0.36
 DropEdge 86.34 ± 1.18 74.87 ± 1.92 86.15 ± 0.59 91.73 ± 0.29
 GCNII 87.31 ± 1.34 77.13 ± 1.93 88.46 ± 2.01 91.97 ± 2.08
 DAGNN 88.29 ± 1.35 77.67 ± 1.44 87.81 ± 0.52 91.34 ± 0.76
 SMEGCN 88.74 ± 1.26 78.28 ± 1.86 88.16 ± 0.46 90.82 ± 1.21
 SJLR 88.73 ± 1.37 76.35 ± 1.82 88.56 ± 0.68 89.24 ± 1.42
 GraphSAGE++ 80.77 ± 1.73 71.81 ± 1.90 86.15 ± 0.64 87.41 ± 1.58
 NASC 87.44 ± 1.54 77.02 ± 2.11 87.93 ± 0.97 91.28 ± 1.79
 ADRP-GNN 89.48 ± 1.78 79.83 ± 2.04 89.02 ± 0.81 92.55 ± 1.83
 △ +0.83% +1.94% +0.52% +0.63%
Table 3
Performance results on Actor, Cornell, Texas, and Wisconsin in terms of node classification accuracy (in percent). The best results are boldfaced.
The underlined numbers are the second best results.
 Dataset Actor Cornell Texas Wisconsin
 GraphSAGE 30.37 ± 1.37 47.32 ± 4.76 54.79 ± 6.46 55.33 ± 6.28
 GCN 27.43 ± 1.04 45.95 ± 4.81 55.26 ± 2.24 50.98 ± 5.08
 GAT 28.61 ± 1.02 48.64 ± 2.79 55.56 ± 4.48 54.90 ± 7.03
 GIN 25.39 ± 0.72 45.95 ± 4.56 55.26 ± 5.61 47.06 ± 3.36
 JK-Net 28.29 ± 1.12 54.05 ± 4.63 56.02 ± 5.85 49.01 ± 6.02
 NLGCN 32.38 ± 1.93 58.12 ± 5.43 66.59 ± 6.17 58.31 ± 7.27
 GeniePath 32.26 ± 0.93 55.86 ± 5.13 57.78 ± 6.33 58.82 ± 5.56
 DropEdge 24.86 ± 0.82 56.75 ± 8.38 34.21 ± 7.07 49.01 ± 7.41
 GCNII 29.39 ± 1.97 58.28 ± 5.17 62.17 ± 6.05 58.83 ± 3.72
 DAGNN 32.97 ± 1.17 56.24 ± 6.91 64.63 ± 3.72 49.01 ± 4.45
 SMEGCN 31.58 ± 1.87 60.40 ± 4.21 68.41 ± 3.16 64.29 ± 5.09
 SJLR 30.79 ± 1.45 48.64 ± 5.88 53.51 ± 4.14 58.19 ± 4.72
 GraphSAGE++ 28.79 ± 1.62 46.39 ± 6.26 52.60 ± 4.66 52.91 ± 5.13
 NASC 30.89 ± 1.74 59.42 ± 7.85 53.96 ± 5.64 60.69 ± 5.49
 ADRP-GNN 34.54 ± 1.61 64.86 ± 5.24 70.27 ± 5.62 68.63 ± 5.35
 △ +4.55% +6.88% +2.65% +6.32%
settings reported in the relevant papers. We utilize the Adam optimizer
with an initial learning rate of 0.01 for the task-loss function and 0.01
for the meta-loss function, respectively. In all cases, we use an early
stopping strategy on the validation datasets. For all graph datasets, we
randomly split nodes of each class into 60%, 20%, and 20% for training,
validation, and testing, which is the same setting as in Pei, Wei, Chang,
Lei, and Yang (2019). We repeat the experiments 10 times and report
the average results and standard deviation.

5.4. Performance results

The performances of the competing baselines and ADRP-GNN are
shown in Tables 2 and 3. The methods are mainly divided into two
types: (1) Traditional GNNs in the setting of a reasonable receptive field
can achieve a similar performance with other methods. (2) The existing
GNN methods utilize various ways to overcome the over-smoothing
issue. The methods learn deep and distinguishable representations,
which is an advantage over other baselines. Compared to the baselines,
ADRP-GNN has a larger receptive field at the same or fewer number of
layers and parameters. In addition, ADRP-GNN utilizes Meta Learner
to select suitable receptive fields, which help the node obtain sufficient
structural information and avoid introducing redundant information.
However, due to the complicated structure of the Meta Learner and
the lack of the ground truth value for its task, which results in training
difficulties and large standard deviations. The results show that ADRP-
GNN outperforms all the baselines in accuracy for node classification,
achieving 0.52% to 6.88% improvements on these datasets.
7
5.5. Over-smoothing analysis

To evaluate the performance of ADRP-GNN on the over-smoothing
issue, we conduct experiments from two aspects: whether the over-
smoothing issue occurs when MuGC increases the receptive field, and
whether Meta Learner can select the suitable receptive field.

For the first aspect, we drop Meta Learner from ADRP-GNN and
manually set the MuGC’s receptive fields. We choose the traditional
GNN (GCN and GAT) as a comparison for the performance of the
model under different receptive fields. The traditional GNN enlarges the
receptive field by stacking graph convolutional layers. As shown in Figs.
4(a) and (c), traditional GNN experiences the over-smoothing issue,
especially when the depth is greater than 32, the performance degrades
significantly, while performances of MuGC and the model (GeniePath
and DAGCN) for over-smoothing fluctuate only slightly as the receptive
field increases. In summary, the experimental results highlight that
while traditional GNNs suffer from significant performance degrada-
tion due to over-smoothing as the receptive field increases, MuGC,
along with the model for over-smoothing, maintain stable performance
despite the expansion of the receptive field.

To rule out the possibility that the performance degradation is
due to model complexity causing overfitting, we present Figs. 4(b)
and (d) for comparison. As the receptive field increases, the models’
performance declines on both the training and test sets, suggesting that
the performance degradation is not attributable to overfitting.

Furthermore, to offer a more rigorous evaluation of over-smoothing,
we introduce the Dirichlet energy metric, which provides a quantita-
tive measure of the smoothness in the learned node representations.

H. Gao et al. Neural Networks 190 (2025) 107658
Fig. 4. (a) and (c) are the classification performances on the test sets. (b) and (d) are the classification performances on the training sets.
Fig. 5. (a) Dirichlet Energy with respect to the receptive field on CiteSeer. (b) The ratio of correct and incorrect classifications under the receptive fields which Meta Learner
predicts on CiteSeer.
Fig. 5(a) displays the Dirichlet energy across various receptive fields.
As the receptive field increases, the Dirichlet energy of traditional
GNNs decreases, indicating that the node representations become more
similar to one another. In contrast, the models designed to address
over-smoothing maintain largely stable Dirichlet energy values. In sum-
mary, the Dirichlet energy analysis shows that traditional GNNs ex-
perience over-smoothing with increasing receptive field, while models
addressing over-smoothing maintain stable values.

To investigate our framework, we visualize the embedding values
of MuGC and GCN. As illustrated in Fig. 6, the embedding of different
category nodes is distinguishable when the depth of MuGC and GCN
is 4. Meanwhile, the embedding of our framework has no significant
changes comparing depths of 4 and 64, which demonstrates the over-
smoothing issue relieved. However, the embedding of GCN becomes
indistinguishable with the depth increasing to 64, that is, the over-
smoothing issue. The fluctuation is due to the noise introduced by the
increased receptive fields, so it is necessary to select a suitable receptive
field.

For the other aspect, we set the maximum depth of the MuGC as
10 and count the correct and incorrect instance ratios that ADRP-GNN
8
predict under the receptive fields of Meta Learner output, which is
shown in Fig. 5(b). The optimal receptive fields of nodes are 3 to 6,
and the traditional GNNs exhibit excellent performance in this range of
receptive fields, so the receptive fields that Meta Learner predicts are
consistent with the number of layers of the traditional GNN. Although
2-hop structural information for some nodes is sufficient to address
the classification task, node information of larger receptive fields is
beneficial for node representations, so the Meta Learner evaluates
higher scores and selects larger receptive fields. In the task, neighbors
at distances greater than 6 have relatively little effect or introduce noise
on the target node representations.

5.6. Time consumption analysis

We further examine the time consumption of the architecture on the
large dataset. The critical difference in the time consumption of ADRP-
GNN is the MuGC. We assess the effect of the number of samplings on
the ability where the MuGC learns structure information and the time
consumption.

H. Gao et al. Neural Networks 190 (2025) 107658
Fig. 6. Embedding visualizations on CiteSeer. It shows the embedding values of MuGC and GCN for stacked layers of 4 and 64, respectively. The colors denote the embedding
values, where the brighter the color, the larger the value. The embedding dimension is 64, as in the horizontal axis. As shown in the vertical axis, we randomly select one node
in each category, for a total of 6 nodes.
Table 4
Time consumption analysis of MuGC with a sample strategy on Facebook. The ‘‘#
sample nodes’’ indicates the number of sample neighbors from each receptive field.
For convenience, the number of nodes sampled by the first hop is the average degree,
and the other hops sample multiples of the average degree. We set the depth of the
GCN and GAT to be the same as the receptive field of MuGC.
 Method # Sample nodes Acc. Computation time (s)
 Training Inference

MuGC

1/2 88.53 0.114 0.058
 1 89.86 0.163 0.079
 2 90.62 0.257 0.135
 4 91.37 0.276 0.183
 all 92.56 0.326 0.245
 GCN – 54.64 0.047 0.026
 GAT – 33.18 0.090 0.038

Specifically, for the sampling strategy, we randomly sample the
number based on the average degree of a graph, which is 8 on Face-
book. We record the computation time of training and inference, where
the former is the time of an epoch and the latter is the predicted test
dataset. We adopt traditional models with the same depth as compared.

As shown in Table 4, as the number of sampling nodes increases, the
MuGC gets better performance but consumes more time. Theoretically,
the time complexity of MuGC is the same as that of traditional GNNs
when all hops sample 8 nodes, but the MuGC consumes more time than
traditional GNNs because of engineering realization. The performance
and time consumption are better balanced when the MuGC samples
fourfold nodes. A better sampling strategy and the number of sampling
nodes need to be further explored.

5.7. Ablation study

This subsection describes ablation studies of ADRP-GNN in Table 5
to validate the effectiveness of key components. We can observe that:
(1) When we drop the Backbone Network, comparing the experimental
results in rows 1, 2 and rows 3, 4 of Table 5, respectively, the per-
formance of our architecture declines. It demonstrates the necessity of
the Backbone Network increasing architecture depth. (2) To evaluate
the effect of MuGC, we drop the component (row 5 in Table 5) or
replace it with traditional GNN (GAT) (row 6 in Table 5), and the result
illustrates that MuGC enlarges the receptive field to benefit architecture
performance. (3) We add Meta Learner to the architecture, which
consists of MuGC and the Backbone Network, and discover that the
9
Table 5
Ablation study of architecture on CiteSeer.
 Accuracy GAT MuGC Meta

learner
Backbone
network

 79.83 √ √ √
 73.24 √ √
 77.97 √ √
 70.41 √
 58.31 √
 75.28 √ √

performance of the architecture is an enhancement, comparing rows
1 and 3 in Table 5.

6. Conclusion

In this paper, we tackle the over-smoothing issue that limits the
model depth in the GNN field. We propose a novel architecture that
adaptively constructs receptive fields, and aggregates messages by a
monolayer graph convolution layer, to relieve the over-smoothing is-
sue. Our method proposes a new perspective decoupling the number of
stacked graph convolution layers and the receptive field into two struc-
tures, i.e., MuGC and Backbone Network, where the former enlarges
receptive fields with a monolayer graph convolution layer and the
latter increases the model depth to enhance learning ability. To avoid
noise introduced by larger receptive fields, we present Meta Learner to
select suitable receptive fields for nodes. Our study reveals a previously
unexplored way that monolayer fuses distant neighbor information and
variable receptive fields, offering new insights into over-smoothing rep-
resentations. On a real-world dataset, the proposed approach achieves
competitive results and better solves the over-smoothing issue. In the
future, we will extend our framework to investigate the usage of spatio-
temporal representation, heterogeneous graph neural networks, and
unsupervised tasks.

CRediT authorship contribution statement

Hepeng Gao: Writing – review & editing, Writing – original draft,
Methodology. Funing Yang: Supervision. Yongjian Yang: Resources.
Yuanbo Xu: Writing – review & editing. Yijun Su: Writing – review &
editing.

H. Gao et al. Neural Networks 190 (2025) 107658
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work was supported by the Science and Technology Develop-
ment Program of Jilin Province (No. 20240302093GX) and the National
Natural Science Foundation of China (No. 62072209).

Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.neunet.2025.107658.

Data availability

I have provided access links (https://github.com/wn13/ADRPGNN
) to the code and data related to the experiments in the paper.

References

Abu-El-Haija, S., Kapoor, A., Perozzi, B., & Lee, J. (2020). N-gcn: Multi-scale graph
convolution for semi-supervised node classification. In Uncertainty in artificial
intelligence (pp. 841–851). PMLR.

Bo, D., Wang, X., Shi, C., & Shen, H. (2021). Beyond low-frequency information in
graph convolutional networks. In Proceedings of the AAAI conference on artificial
intelligence (pp. 3950–3957).

Chen, D., Lin, Y., Li, W., Li, P., Zhou, J., & Sun, X. (2020). Measuring and relieving
the over-smoothing problem for graph neural networks from the topological view.
In Proceedings of the AAAI conference on artificial intelligence (pp. 3438–3445).

Chen, M., Wei, Z., Huang, Z., Ding, B., & Li, Y. (2020). Simple and deep graph
convolutional networks. In Proceedings of machine learning research: Vol. 119,
Proceedings of the 37th international conference on machine learning (pp. 1725–1735).

Defferrard, M., Bresson, X., & Vandergheynst, P. (2016). Convolutional neural networks
on graphs with fast localized spectral filtering. In Advances in neural information
processing systems (pp. 3837–3845).

Donnat, C., & Jeong, S. W. (2023). Studying the effect of GNN spatial convolutions
on the embedding space’s geometry. In Uncertainty in artificial intelligence (pp.
539–548). PMLR.

Duvenaud, D. K., Maclaurin, D., Iparraguirre, J., Bombarell, R., Hirzel, T., Aspuru-
Guzik, A., et al. (2015). Convolutional networks on graphs for learning molecular
fingerprints. Advances in Neural Information Processing Systems, 28.

Feng, W., Zhang, J., Dong, Y., Han, Y., Luan, H., Xu, Q., et al. (2020). Graph random
neural networks for semi-supervised learning on graphs. In Advances in neural
information processing systems.

Giraldo, J. H., Skianis, K., Bouwmans, T., & Malliaros, F. D. (2023). On the trade-off
between over-smoothing and over-squashing in deep graph neural networks. In
Proceedings of the 32nd ACM international conference on information and knowledge
management (pp. 566–576). ACM.

Gregucci, C., Nayyeri, M., Hernández, D., & Staab, S. (2023). Link prediction with
attention applied on multiple knowledge graph embedding models. In Proceedings
of the ACM web conference 2023 (pp. 2600–2610).

Guo, H., & Mao, Y. (2023). Interpolating graph pair to regularize graph classification. In
Proceedings of the AAAI conference on artificial intelligence: Vol. 37 (pp. 7766–7774).

Hu, R., Pan, S., Long, G., Lu, Q., Zhu, L., & Jiang, J. (2020). Going deep: Graph
convolutional ladder-shape networks. In Proceedings of the AAAI conference on
artificial intelligence.

Jiang, X., Ji, P., & Li, S. (2019). CensNet: Convolution with edge-node switching in
graph neural networks. In IJCAI (pp. 2656–2662).

Jiang, X., Yang, Z., Wen, P., Su, L., & Huang, Q. (2022). A sparse-motif ensemble
graph convolutional network against over-smoothing. In Proc. 31st int. joint conf.
artif. intell. (pp. 2094–2100).

Jiawei, E., Zhang, Y., Yang, S., Wang, H., Xia, X., & Xu, X. (2024). GraphSAGE++:
Weighted multi-scale GNN for graph representation learning. Neural Processing
Letters, 56(1), 24.

Ju, W., Mao, Z., Yi, S., Qin, Y., Gu, Y., Xiao, Z., et al. (2024). Hypergraph-enhanced dual
semi-supervised graph classification. In International conference on machine learning
(pp. 22594–22604). PMLR.

Kipf, T. N., & Welling, M. (2017). Semi-supervised classification with graph
convolutional networks. In International conference on learning representations.
10
Li, Q., Han, Z., & Wu, X. (2018). Deeper insights into graph convolutional networks
for semi-supervised learning. In Proceedings of the AAAI conference on artificial
intelligence (pp. 3538–3545).

Li, J., Shomer, H., Mao, H., Zeng, S., Ma, Y., Shah, N., et al. (2023). Evaluating
graph neural networks for link prediction: Current pitfalls and new benchmarking.
Advances in Neural Information Processing Systems, 36, 3853–3866.

Li, R., Wang, S., Zhu, F., & Huang, J. (2018). Adaptive graph convolutional neu-
ral networks. In Proceedings of the AAAI conference on artificial intelligence (pp.
3546–3553).

Liu, Z., Chen, C., Li, L., Zhou, J., Li, X., Song, L., et al. (2019). GeniePath: Graph neural
networks with adaptive receptive paths. In Proceedings of the AAAI conference on
artificial intelligence (pp. 4424–4431).

Liu, M., Gao, H., & Ji, S. (2020). Towards deeper graph neural networks. In The 26th
ACM SIGKDD conference on knowledge discovery and data mining (pp. 338–348).

Liu, X., Li, X., Fiumara, G., & De Meo, P. (2023). Link prediction approach combined
graph neural network with capsule network. Expert Systems with Applications, 212,
Article 118737.

Liu, Y., Liang, K., Xia, J., Zhou, S., Yang, X., Liu, X., et al. (2023). Dink-net: Neural
clustering on large graphs. In International conference on machine learning (pp.
21794–21812). PMLR.

Liu, M., Wang, Z., & Ji, S. (2021). Non-local graph neural networks. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 44(12), 10270–10276.

Liu, Y., Yang, X., Zhou, S., Liu, X., Wang, S., Liang, K., et al. (2023). Simple contrastive
graph clustering. IEEE Transactions on Neural Networks and Learning Systems.

Liu, C., Zhan, Y., Ma, X., Ding, L., Tao, D., Wu, J., et al. (2023). Gapformer: Graph
transformer with graph pooling for node classification. In IJCAI (pp. 2196–2205).

Liu, Y., Zhou, C., Pan, S., Wu, J., Li, Z., Chen, H., et al. (2023). CurvDrop: A Ricci
curvature based approach to prevent graph neural networks from over-smoothing
and over-squashing. In Proceedings of the ACM web conference 2023 (pp. 221–230).

Lu, K., Yu, Y., Fei, H., Li, X., Yang, Z., Guo, Z., et al. (2024). Improving expressive
power of spectral graph neural networks with eigenvalue correction. In Proceedings
of the AAAI conference on artificial intelligence: Vol. 38 (pp. 14158–14166).

Luan, S., Hua, C., Xu, M., Lu, Q., Zhu, J., Chang, X.-W., et al. (2023). When do
graph neural networks help with node classification? investigating the homophily
principle on node distinguishability. Advances in Neural Information Processing
Systems, 36, 28748–28760.

Luo, Y., Shi, L., & Wu, X.-M. (2025). Unlocking the potential of classic GNNs for
graph-level tasks: Simple architectures meet excellence. arXiv preprint arXiv:2502.
09263.

Ma, G., Hu, C., Ge, L., & Zhang, H. (2023). Multi-view robust graph representation
learning for graph classification. In IJCAI (pp. 4037–4045).

Ma, L., Lin, C., Lim, D., Romero-Soriano, A., Dokania, P. K., Coates, M., et al. (2023).
Graph inductive biases in transformers without message passing. In International
conference on machine learning (pp. 23321–23337). PMLR.

Ma, X., Wang, J., Chen, H., & Song, G. (2021). Improving graph neural networks
with structural adaptive receptive fields. In Proceedings of the web conference (pp.
2438–2447).

Monti, F., Bronstein, M., & Bresson, X. (2017). Geometric matrix completion with
recurrent multi-graph neural networks. Advances in Neural Information Processing
Systems, 30.

Pan, E., & Kang, Z. (2023). Beyond homophily: Reconstructing structure for
graph-agnostic clustering. In International conference on machine learning (pp.
26868–26877). PMLR.

Pei, H., Wei, B., Chang, K. C.-C., Lei, Y., & Yang, B. (2019). Geom-GCN: Geometric
graph convolutional networks. In International conference on learning representations.

Rong, Y., Huang, W., Xu, T., & Huang, J. (2019). DropEdge: Towards deep graph
convolutional networks on node classification. In International conference on learning
representations.

Sancak, K., Balin, M. F., & Catalyurek, U. (2024). Do we really need complicated graph
learning models? – a simple but effective baseline. In The third learning on graphs
conference.

Tan, Z., Guo, R., Ding, K., & Liu, H. (2023). Virtual node tuning for few-shot node
classification. In Proceedings of the 29th ACM SIGKDD conference on knowledge
discovery and data mining (pp. 2177–2188).

Tan, Q., Zhang, X., Liu, N., Zha, D., Li, L., Chen, R., et al. (2023). Bring your own view:
Graph neural networks for link prediction with personalized subgraph selection. In
Proceedings of the sixteenth ACM international conference on web search and data
mining (pp. 625–633).

Tsitsulin, A., Palowitch, J., Perozzi, B., & Müller, E. (2023). Graph clustering with graph
neural networks. Journal of Machine Learning Research, 24(127), 1–21.

Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., & Bengio, Y. (2018).
Graph attention networks. In International conference on learning representations.

Wang, Z., Di, S., & Chen, L. (2023). A message passing neural network space for better
capturing data-dependent receptive fields. In Proceedings of the 29th ACM SIGKDD
conference on knowledge discovery and data mining (pp. 2489–2501).

Wang, Y., Yi, K., Liu, X., Wang, Y. G., & Jin, S. (2023). ACMP: Allen-Cahn message
passing with attractive and repulsive forces for graph neural networks. In The
eleventh international conference on learning representations. OpenReview.net.

https://doi.org/10.1016/j.neunet.2025.107658
https://github.com/wn13/ADRPGNN
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb1
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb1
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb1
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb1
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb1
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb2
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb2
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb2
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb2
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb2
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb3
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb3
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb3
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb3
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb3
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb4
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb4
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb4
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb4
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb4
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb5
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb5
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb5
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb5
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb5
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb6
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb6
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb6
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb6
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb6
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb7
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb7
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb7
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb7
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb7
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb8
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb8
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb8
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb8
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb8
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb9
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb9
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb9
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb9
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb9
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb9
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb9
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb10
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb10
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb10
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb10
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb10
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb11
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb11
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb11
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb12
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb12
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb12
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb12
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb12
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb13
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb13
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb13
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb14
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb14
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb14
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb14
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb14
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb15
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb15
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb15
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb15
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb15
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb16
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb16
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb16
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb16
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb16
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb17
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb17
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb17
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb18
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb18
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb18
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb18
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb18
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb19
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb19
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb19
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb19
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb19
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb20
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb20
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb20
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb20
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb20
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb21
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb21
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb21
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb21
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb21
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb22
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb22
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb22
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb23
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb23
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb23
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb23
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb23
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb24
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb24
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb24
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb24
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb24
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb25
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb25
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb25
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb26
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb26
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb26
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb27
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb27
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb27
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb28
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb28
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb28
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb28
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb28
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb29
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb29
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb29
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb29
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb29
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb30
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb30
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb30
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb30
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb30
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb30
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb30
http://arxiv.org/abs/2502.09263
http://arxiv.org/abs/2502.09263
http://arxiv.org/abs/2502.09263
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb32
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb32
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb32
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb33
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb33
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb33
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb33
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb33
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb34
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb34
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb34
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb34
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb34
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb35
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb35
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb35
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb35
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb35
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb36
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb36
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb36
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb36
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb36
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb37
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb37
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb37
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb38
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb38
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb38
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb38
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb38
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb39
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb39
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb39
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb39
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb39
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb40
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb40
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb40
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb40
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb40
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb41
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb41
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb41
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb41
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb41
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb41
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb41
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb42
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb42
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb42
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb43
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb43
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb43
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb44
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb44
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb44
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb44
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb44
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb45
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb45
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb45
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb45
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb45

H. Gao et al. Neural Networks 190 (2025) 107658
Wang, X., & Zhang, M. (2022). How powerful are spectral graph neural networks.
In K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvari, G. Niu, & S. Sabato (Eds.),
Proceedings of machine learning research: Vol. 162, Proceedings of the 39th international
conference on machine learning (pp. 23341–23362). PMLR.

Xhonneux, L.-P., Qu, M., & Tang, J. (2020). Continuous graph neural networks. In
Proceedings of machine learning research: Vol. 119, Proceedings of the 37th international
conference on machine learning (pp. 10432–10441).

Xu, K., Hu, W., Leskovec, J., & Jegelka, S. (2019). How powerful are graph neural
networks? In International conference on learning representations.

Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K.-i., & Jegelka, S. (2018). Repre-
sentation learning on graphs with jumping knowledge networks. In Proceedings of
machine learning research: Vol. 80, Proceedings of the 35th international conference on
machine learning (pp. 5453–5462).

Yang, M., Shen, Y., Li, R., Qi, H., Zhang, Q., & Yin, B. (2022). A new perspective on the
effects of spectrum in graph neural networks. In K. Chaudhuri, S. Jegelka, L. Song,
C. Szepesvari, G. Niu, & S. Sabato (Eds.), Proceedings of machine learning research:
Vol. 162, Proceedings of the 39th international conference on machine learning (pp.
25261–25279). PMLR.

Yang, L., Wang, C., Gu, J., Cao, X., & Niu, B. (2021). Why do attributes propagate
in graph convolutional neural networks? In Proceedings of the AAAI conference on
artificial intelligence (pp. 4590–4598).
11
Yin, N., Shen, L., Wang, M., Luo, X., Luo, Z., & Tao, D. (2023). OMG: Towards effective
graph classification against label noise. IEEE Transactions on Knowledge and Data
Engineering, 35(12), 12873–12886.

Zhang, G., Cheng, D., Yuan, G., & Zhang, S. (2024). Learning fair representations via
rebalancing graph structure. Information Processing & Management, 61(1), Article
103570.

Zhang, J., Shi, X., Xie, J., Ma, H., King, I., & Yeung, D. (2018). GaAN: Gated attention
networks for learning on large and spatiotemporal graphs. In Proceedings of the
thirty-fourth conference on uncertainty in artificial intelligence (pp. 339–349).

Zhang, S., Zhang, J., Song, X., Adeshina, S., Zheng, D., Faloutsos, C., et al. (2023).
PaGE-Link: Path-based graph neural network explanation for heterogeneous link
prediction. In Proceedings of the ACM web conference 2023 (pp. 3784–3793).

Zhang, K., Zhu, Y., Wang, J., & Zhang, J. (2020). Adaptive structural fingerprints for
graph attention networks. In International conference on learning representations.

Zhao, J., Jin, D., Ge, M., Shan, L., Wang, X., He, D., et al. (2024). Fug: Feature-universal
graph contrastive pre-training for graphs with diverse node features. Advances in
Neural Information Processing Systems, 37, 4003–4034.

Zhao, S., Zheng, Y., Li, J., Zhang, X., Tang, C., & Tan, Z. (2024). Pure kernel
graph fusion tensor subspace clustering under non-negative matrix factorization
framework. Information Processing & Management, 61(2), Article 103603.

http://refhub.elsevier.com/S0893-6080(25)00538-6/sb46
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb46
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb46
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb46
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb46
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb46
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb46
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb47
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb47
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb47
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb47
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb47
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb48
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb48
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb48
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb49
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb49
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb49
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb49
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb49
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb49
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb49
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb50
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb50
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb50
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb50
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb50
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb50
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb50
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb50
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb50
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb51
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb51
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb51
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb51
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb51
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb52
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb52
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb52
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb52
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb52
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb53
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb53
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb53
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb53
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb53
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb54
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb54
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb54
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb54
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb54
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb55
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb55
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb55
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb55
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb55
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb56
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb56
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb56
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb57
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb57
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb57
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb57
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb57
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb58
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb58
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb58
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb58
http://refhub.elsevier.com/S0893-6080(25)00538-6/sb58

	Adaptive receptive field graph neural networks
	Introduction
	Related Work
	Graph Tasks
	Over-smoothing Issue in GNNs
	Adaptive Receptive Fields

	Preliminaries
	Methodology
	Backbone Network
	Multi-hop Graph Convolution Network
	Node Layer
	Receptive Field Layer

	Meta Learner
	Optimization
	Task-loss Function
	Meta-loss Function
	Training

	Time Complexity Analysis

	Experiments
	Datasets
	Baselines
	Experimental Settings
	Performance Results
	Over-smoothing Analysis
	Time Consumption Analysis
	Ablation Study

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A. Supplementary data
	Data availability
	References

